Chemical Compositions of the Essential Oils of the Aerial Parts of Chamaemelum mixtum (L.) Alloni

Florent Darriet, ${ }^{\dagger}$ Mourad Bendahou, ${ }^{\S}$ Jean Costa, ${ }^{\dagger}$ and Alain Muselli* ${ }^{*}{ }^{\dagger}$
${ }^{\dagger}$ Laboratoire Chimie des Produits Naturels, UMR CNRS 6134, Université de Corse, B.P. 52, 20250 Corti, France
${ }^{\S}$ Faculté des Sciences, Université de Tlemcen, B.P. 119, 13000 Tlemcen, Algeria

S Supporting Information

Abstract

The chemical compositions of the aerial parts essential oils of Chamaemelum mixtum (L.) Alloni from Corsica and Sardinia were investigated employing gas chromatography and gas chromatography-mass spectrometry (GC-MS). The structure of (Z)-heptadeca-9,16-dien-7-one, a natural compound not previously described, was elucidated by GC-MS (electron impact and chemical ionization) and one-dimensional and two-dimensional nuclear magnetic resonance spectroscopy. The variation in C. mixtum essential oil was studied, and statistical analysis showed the clustering of oil samples into three groups according to the amount of oxygenated compounds; these groups correlated to the harvest area. The strong biological activity of the oxygenated fraction (minimum inhibitory concentration of $<0.1 \mathrm{mg} / \mathrm{mL}$) of the Corsican oil against Candida albicans, Citrobacter frendii, Enterococcus faecalis, Escherichia coli, Klebsiella pneumoniae, Listeria monocytogenes, and Staphyllococcus aureus can be attributed to the presence of irregular monoterpene alcohols and (Z)-heptadeca-9,16-dien-7-one.

KEYWORDS: Chamaemelum mixtum (L.) Alloni essential oil, chemical variability, (Z)-heptadeca-9,16-dien-7-one, irregular oxygenated monoterpes, GC-MS, NMR, antibacterial activity

INTRODUCTION

The Chamaemelum genus, like the Anthemis and Matricaria genera, belongs to the Asteraceae family and Anthemideae tribe. The genus has only two species: Chamaemelum mixtum (syn. Ormenis mixta, Anthemis mixta, Cladanthus mixtus), usually known as Moroccan chamomile, and Chamaemelum fuscatum (syn. Ormenis fuscata, Anthemis fuscata). ${ }^{1,2}$ The extracts of these species have been studied, and some new sesquiterpene lactones and coumarins have been identified. ${ }^{3-6}$
C. mixtum is an annual species growing wild in the coastal zones of western Europe and the Mediterranean. Flowers comprise yellow capitula and white bracts, and the branched stem is erect and smooth and grows to a height of $15-60 \mathrm{~cm}$. The long and narrow leaves are bipinnate or tripinnate. ${ }^{1}$ In Morocco, C. mixtum is used to make a decoction to treat fever and gastric diseases. The plant is well-known and cultivated for the extraction of an essential oil from its aerial parts, which is sold and used in aromatherapy as an aphrodisiac, antibacterial, and anxiolytic. ${ }^{7}$ To our knowledge, three studies have investigated the chemical composition of C. mixtum essential oils from Morocco, ${ }^{8-10}$ in which santolina alcohol (27.9$32.0 \%$), α-pinene (3.6-15.0\%), germacrene D (3.3-10.2\%), yomogi alcohol ($2.8 \%-4.5 \%$), and (E) $-\beta$-farnesene ($2.5-4.5 \%$) have been identified as the main components. Furthermore, the Moroccan oil of C. mixtum studied by Satrani et al. showed strong in vitro activity against bacteria such as Escherichia coli, Bacillus subtilis, Staphylococcus aureus and Micrococcus luteus as well as fungi such as Penicillium parasiticus, Aspergillus niger, and Trametes pini.

The present work investigates the chemical compositions of the essential oils of the aerial parts of C. mixtum from Corsica and Sardinia and reports the isolation and structure of a previously undescribed natural product. In addition, the
intraspecies variations of essential oils from 10 Corsican and three Sardinian sample locations were characterized by statistical analysis. Principal component analysis and cluster analysis were performed to determine the correlation between the chemical composition and possible environmental factors associated with differences in essential oils. Finally, the biological activity of C. mixtum essential oil from Corsica was evaluated against bacteria and yeast involved in foodborne and nosocomial infectious illnesses.

EXPERIMENTAL PROCEDURES

Plant Material and Isolation of the Essential Oil. Aerial parts of C. mixtum (L.) Alloni were collected in full bloom (May and June 2008) at 10 stations in Corsica [La Marana (C1, $42^{\circ} 39^{\prime} 14^{\prime \prime} \mathrm{N} ; 9^{\circ} 27^{\prime}$ $10^{\prime \prime} \mathrm{E}$), Embouchure Golo (C2, $42^{\circ} 31^{\prime} 18^{\prime \prime} \mathrm{N} ; 9^{\circ} 32^{\prime} 3^{\prime \prime} \mathrm{E}$), Arinella (C3, $42^{\circ} 39^{\prime} 47^{\prime \prime} \mathrm{N} ; 9^{\circ} 26^{\prime} 54^{\prime \prime} \mathrm{E}$), Quercionu (C4, $41^{\circ} 56^{\prime} 46^{\prime \prime} \mathrm{N} ; 9^{\circ}$ $24^{\prime} 41^{\prime \prime} \mathrm{E}$), Calvi (C5, $42^{\circ} 33^{\prime} 19^{\prime \prime} \mathrm{N} ; 8^{\circ} 45^{\prime} 58^{\prime \prime} \mathrm{E}$), Ostriconi (C6, 42° $39^{\prime} 36^{\prime \prime} \mathrm{N} ; 9^{\circ} 3^{\prime} 34^{\prime \prime} \mathrm{E}$), Lama ($\mathrm{C} 7,42^{\circ} 34^{\prime} 35^{\prime \prime} \mathrm{N} ; 9^{\circ} 9^{\prime} 6^{\prime \prime} \mathrm{E}$), Ajaccio "Iles Sanguinaires" (C8, $41^{\circ} 54^{\prime} 37^{\prime \prime} \mathrm{N} ; 8^{\circ} 38^{\prime} 50^{\prime \prime} \mathrm{E}$), Diane (C9, 42° $7^{\prime} 10^{\prime \prime} \mathrm{N}$; $9^{\circ} 32^{\prime} 44^{\prime \prime} \mathrm{E}$), and Folleli ($\mathrm{C} 10,42^{\circ} 31^{\prime} 5^{\prime \prime} \mathrm{N} ; 9^{\circ} 31^{\prime} 59^{\prime \prime} \mathrm{E}$)] and at 3 stations in Sardinia [Praxis (S1, $39^{\circ} 7^{\prime} 0^{\prime \prime} \mathrm{N} ; 9^{\circ} 31^{\prime} 12^{\prime \prime} \mathrm{E}$), La Caletta (S2, $40^{\circ} 35^{\prime} 36^{\prime \prime} \mathrm{N} ; 9^{\circ} 45^{\prime} 21^{\prime \prime} \mathrm{E}$), and Oristano (S3, $39^{\circ} 48^{\prime} 54^{\prime \prime}$ $\mathrm{N} ; 8^{\circ} 33^{\prime} 0^{\prime \prime} \mathrm{E}$)]. A voucher specimen was deposited in the herbarium of University of Corsica, Corte, France. The fresh plant material was hydrodistilled (5 h) using a Clevenger-type apparatus according to the method recommended in the European Pharmacopoeia, ${ }^{11}$ and the essential oil yield was $0.022-0.070 \%$.

Chemicals. Standard compounds, solvents, and reagents were purchased from Sigma-Aldrich, except sabinene, purchased from

[^0]Extrasynthese. For the measurement of response factors (RFs), the chemicals used were neo-allo-ocimene, α-pinene, β-pinene, γ terpinene, limonene, β-caryophyllene, α-humulene, aromadendrene, nerol, lavandulol, (E)-hex-3-en-1-ol, cedrol, globulol, pentyl acetate, lavandulyl acetate, trans-myrtenyl acetate, cedryl acetate, artemisia ketone, camphor, jasmone, isoborneol methyl ether, carvacrol methyl ether, caryophyllene oxide, (E)-2-hexenal, (E, E)-2,4-decadienal, and (E)-2-decenal.

General Experimental Procedures. GC-FID Conditions. Analyses were carried out using a Perkin-Elmer Clarus 600 GC apparatus (Walthon, MA) equipped with a single injector and two flame ionization detectors (FID). The apparatus was used for simultaneous sampling to two fused-silica capillary columns ($60 \mathrm{~m} \times 0.22 \mathrm{~mm}$, film thickness $=0.25 \mu \mathrm{~m}$) with different stationary phases: Rtx-1 (polydimethylsiloxane) and Rtx-Wax (polyethylene glycol). The oven temperature was programmed from 60 to $230{ }^{\circ} \mathrm{C}$ at $2^{\circ} \mathrm{C}$ min^{-1} and held isothermal at $230{ }^{\circ} \mathrm{C}$ for 30 min . Helium was employed as carrier gas $(1 \mathrm{~mL} \mathrm{~min}-1)$. The injector and detector temperatures were maintained at $280{ }^{\circ} \mathrm{C}$, and samples were injected ($0.1 \mu \mathrm{~L}$ of pure oil) in the split mode ($1: 80$). Retention indices (RI) of compounds were determined relative to the retention times of a series of n-alkanes (C5-C30) by linear interpolation equation ${ }^{12}$ with the aid of software from Perkin-Elmer (TotalChrom navigator).

Quantification of Essential Oil Components. The quantification of essential oil components was carried out using peak area normalization including response factors (RFs) with internal standard according to the methodology reported by Costa et al. ${ }^{13}$ and modified as follows. RFs of 20 standard compounds grouped into seven chemical groups (monoterpene hydrocarbons, sesquiterpene hydrocarbons, alcohols, ketones, aldehydes, esters, others) were measured by GC (Table 2). RFs and calibration curves were determined by diluting each standard in hexane, at five concentrations, containing tridecane (final concentration $=0.7 \mathrm{~g} / 100 \mathrm{~g}$) as internal standard. To calculate the RF of a compound for which a standard is not available, with another one, it is indispensable that the two compounds have the same raw formula. Analysis of each standard was performed in triplicate. For quantification of essential oil components, tridecane ($0.2 \mathrm{~g} / 100 \mathrm{~g}$) was added as internal standard in essential oil. The correction factors (averages of response factors from standards) of each chemical group were calculated and used to determine the essential oil component concentrations $(\mathrm{g} / 100 \mathrm{~g})$ according to their chemical group.

GC-MS-(EI) Conditions. Analyses were performed using a PerkinElmer Turbo mass spectrometer (quadrupole analyzer) coupled to a Perkin-Elmer Autosystem XL, equipped with two fused-silica capillary columns, Rtx-1 and Rtx-Wax. Other GC conditions were the same as described above. Ion source temperature was $150^{\circ} \mathrm{C}$, and energy ionization was 70 eV ; electron ionization mass spectra were acquired with a mass range of $35-350 \mathrm{Da}$ during a scan time 1 s . Oil injected volume was $0.1 \mu \mathrm{~L}$, and fraction injected volume was $0.2 \mu \mathrm{~L}$.

GC-MS-(CI) Conditions. PCI mass spectra with methane were recorded on the same apparatus equipped with an Rtx-Wax column and specific ionization chemical source. Other GC conditions were the same as described above. Injection volume was $0.2 \mu \mathrm{~L}$ of pure oil. The ionizing gas was methane or ammonia. Ion source temperature was $150{ }^{\circ} \mathrm{C}$, and source pressure was 0.2 mbar . Energy ionization was 70 eV . MS (CI) were acquired over the mass range of $60-350 \mathrm{Da}$ during a scan time 1 s .

NMR Analysis Conditions. The structure elucidation of 76 and its corresponding alcohol were carried out by ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR (see the Supporting Information), DEPT, and 2D-NMR (HMBC, HSQC, COSY, and NOESY). Spectra were measured in deuterated chloroform using a Bruker Avance 400 Fourier Transform spectrometer (Wissembourg, France) operating at 100.13 MHz for ${ }^{13} \mathrm{C}$ NMR and at 400.52 MHz for ${ }^{1} \mathrm{H}$ NMR and equipped with a 5 mm probe. All shifts were referred to the internal standard tetramethylsilane (TMS). ${ }^{13} \mathrm{C}$ NMR spectra were recorded with the following parameters: pulse width, 4 s (flip angle, 45°); acquisition time, 2.7 s for 128 K data table with a spectral width of $25000 \mathrm{~Hz}(250 \mathrm{ppm})$; CPD mode decoupling; digital resolution, $0.183 \mathrm{~Hz} /$ point. The number of accumulated scans was $3000-5000$ for each sample depending of the amount of product.

The ${ }^{1} \mathrm{H}$ NMR spectra were recorded with the following parameters: flip angle, 30°; acquisition time, 2.56 s for 32000 data table with a spectral width of 7000 Hz (17.5 ppm). 2D-NMR sequences were recorded using Bruker microprograms.

Isolation of (Z)-Heptadeca-9,16-dien-7-one, 76. Essential oil sample C3 (8.6 g) was submitted to column chromatography on silica gel (ICN $200-500 \mu \mathrm{~m}, 150 \mathrm{~g}$), and three fractions, FA (2630 mg), FB (1010 mg), and FC (4870 mg), were eluted successively with gradients of (v / v) pentane/diethyl ether 100:0, 90:10, and 0:100, respectively. Nine hundred and twenty milligrams of FB (76: 73.2\%) was first submitted to LiAlH_{4} reduction to obtain the corresponding alcohol. Successive column chromatography on silica gel (ICN 63$200 \mu \mathrm{~m}, 50 \mathrm{~g}$) with gradient pentane/diethyl ether 90:10 (v/v) allowed concentration of (Z)-heptadeca-9,16-dien-7-ol ($97.5 \%, 83 \mathrm{mg}$ in FB1). 76 was obtained close to purity ($97.5 \%, 30 \mathrm{mg}$) using pyridium chlorochromate oxidation followed by purification on CCsilica gel (ICN $63-200 \mu \mathrm{~m}, 5 \mathrm{~g}$). Each step of the isolation process has been controlled by GC-FID, CPG-SM-(IE), and ${ }^{13} \mathrm{C}$ NMR.

Reduction of Fraction FB. Fraction FB $(920 \mathrm{mg})$ was dissolved in dry diethyl ether (40 mL) and carefully added to a suspension of aluminum lithium hydride $(250 \mathrm{mg})$ in dry diethyl ether $(60 \mathrm{~mL})$ at 0 ${ }^{\circ} \mathrm{C}$. The mixture was stirred at room temperature and then refluxed for 3 h . The reaction mixture was hydrolyzed by the addition of 15% sodium hydroxide solution $(1 \mathrm{~mL})$ and cold water. The organic layer was separated, washed with water to neutrality, dried over sodium sulfate, and concentrated under vacuum. The mixture (850 mg) contained (Z)-heptadeca-9,16-dien-7-ol (76.4%) as major component.

Oxidation of Fraction FB1. Sixty milligrams of fraction FB1 ((Z)-heptadeca-9,16-dien-7-ol, 97.5\%) was dissolved in 2 mL of CHCl_{3} and added to a suspension of pyridinium chlorochromate $(40 \mathrm{mg})$. The mixture was first stirred at $0^{\circ} \mathrm{C}$ for 3 h and then at room temperature for 3 h . The reaction mixture was filtered, and the solvent was removed under reduced pressure to give 76 with an 80.4% yield.

Identification of Compounds. Identification of Essential Oil Constituents. Identification of individual components in essential oil or in CC fractions was based on a methodology involving integrated techniques, such as GC retention indices, GC-MS (EI and CI), and NMR. Identifications were based on the comparison of their mass spectral pattern and RI with a laboratory-made database "Arômes" built from authentic compounds and with those of pure compounds registered in commercial libraries ${ }^{14-16}$ and literature data. Finally, it was confirmed that all compounds identified in CC fractions were also present in all oil samples by comparison of retention indices (RIA, RIP) and EI-MS with those of the total oil.

Identification of (Z)-Heptadeca-9,16-dien-7-ol: $\mathrm{RI}_{\mathrm{Rtx}-1}$, 1862; $\mathrm{RI}_{\mathrm{Rtx}-\text {-wax }}$ 2282; ${ }^{1} \mathrm{H}$ NMR ($400.1 \mathrm{MHz}, \mathrm{CDCl}_{3}$), $\delta 0.88(3 \mathrm{H}, \mathrm{t}, J=6.5$ $\mathrm{Hz}, \mathrm{H}-1), 1.28(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-2), 1.28(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-3), 1.30(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-5)$, $1.35(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-4), 1.35(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-12), 1.35(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-13), 1.35$ ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-14$), 1.45 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-6$), 1.7 (H, s, OH) 2.03 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-$ 15), $2.05(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-11), 2.20(2 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}, \mathrm{H}-8), 3.65(\mathrm{H}$, quin, J $=5.8 \mathrm{~Hz}, \mathrm{H}-7), 4.94(1 \mathrm{H}, \mathrm{ddt}, J=10.5 \mathrm{~Hz}, J=2.1 \mathrm{~Hz}, J=1.5 \mathrm{~Hz}, \mathrm{H}-$ 17b), $5.01(1 \mathrm{H}, \mathrm{ddt}, J=17.1 \mathrm{~Hz}, J=2.1 \mathrm{~Hz}, J=1.5 \mathrm{~Hz}, \mathrm{H}-17 \mathrm{a}), 5.4$ $(1 \mathrm{H}, \mathrm{ddt}, J=11.0 \mathrm{~Hz}, J=6.8 \mathrm{~Hz}, J=1.5 \mathrm{~Hz}, \mathrm{H}-9), 5.55(1 \mathrm{H}, \mathrm{ddt}, J=$ $11.0 \mathrm{~Hz}, J=7.5 \mathrm{HZ}, J=1.4 \mathrm{~Hz}, \mathrm{H}-10), 5.4(1 \mathrm{H}, \mathrm{ddt}, J=17.1 \mathrm{~Hz}, J=$ $10.2 \mathrm{~Hz}, J=6.7 \mathrm{~Hz}, \mathrm{H}-16)$; ${ }^{13} \mathrm{C}$ NMR ($100.1 \mathrm{MHz}, \mathrm{CDCl}_{3}$), $\delta 14.09$ (3H, C-1), 22.64 ($2 \mathrm{H}, \mathrm{C}-2$), 25.73 ($2 \mathrm{H}, \mathrm{C}-5$), 27.38 ($2 \mathrm{H}, \mathrm{C}-11$), 28.81 ($2 \mathrm{H}, \mathrm{C}-4$), 28.81 ($2 \mathrm{H}, \mathrm{C}-14$), 29.37* ($2 \mathrm{H}, \mathrm{C}-13$), 29.53* ($2 \mathrm{H}, \mathrm{C}-12$), 31.86 ($2 \mathrm{H}, \mathrm{C}-3$), 33.76 ($2 \mathrm{H}, \mathrm{C}-15$), 35.36 ($2 \mathrm{H}, \mathrm{C}-8$), 36.87 ($2 \mathrm{H}, \mathrm{C}-6$), 71.54 (H, C-7), 114.23 (2H, C-17), 125.24 (H, C-9), 134.60 (H, C10), 139,09 (H, C-16); MS (EI, 70 eV), m / z (\%) 55 (100), 41 (45), 43 (44), 68 (44), 81 (44), 67 (33), 97 (33), 82 (25), 96 (21), 110 (19), 138 (9).

Identification of (Z)-Heptadeca-9,16-dien-7-one, 76: $\mathrm{RI}_{\mathrm{Rtx}-1}$, 1827; $\mathrm{RI}_{\mathrm{Rtx}-\mathrm{wax}}$ 2194; ${ }^{1} \mathrm{H}$ NMR ($400.1 \mathrm{MHz}, \mathrm{CDCl}_{3}$) and ${ }^{13} \mathrm{C}$ NMR ($100.1 \mathrm{MHz}, \mathrm{CDCl}_{3}$), see Table 1; MS (E, 70 eV), $m / z(\%)=113$ (100), 85 (40), 95 (10), 114 (10), 122 (8), 81 (5), 88 (4), 153 (3), 135 (3), 250 (2).

Statistical Analysis. The composition data matrix of the 13 samples was analyzed using principal component analysis (PCA) and hierarchical ascending classification (HCA) ${ }^{17}$ with the aid of XLSTAT

Table 1. NMR Data of (Z)-Heptadeca-9,16-dien-7-one, 76

no.	$\begin{gathered} { }^{13} \mathrm{C} \\ \mathrm{NMR}^{a} \end{gathered}$	${ }^{1} \mathrm{H}$ NMR ${ }^{\text {b }}$	$\mathrm{HMBC}^{\text {c }}$	CosY
1	$\stackrel{14.05}{\left(\mathrm{CH}_{3}\right)}$	$0.89\left(\mathrm{t}, J_{1,2}=6.5\right)$	2, 3	2
2	$\begin{aligned} & 22.53 \\ & \left(\mathrm{CH}_{2}\right) \end{aligned}$	1.27 (m)	1, 3, 4	1
3	$\begin{aligned} & 31.63 \\ & \left(\mathrm{CH}_{2}\right) \end{aligned}$	1.27 (m)	1, 2, 4, 5	4
4	$\stackrel{28.77}{\left(\mathrm{CH}_{2}\right)}$	1.35 (m)	6, 5, 3, 2	3, 5
5	$\begin{aligned} & 23.81 \\ & \left(\mathrm{CH}_{2}\right) \end{aligned}$	$1.56\left(\mathrm{tt}, J_{5,4}=6.6, J_{5,6}=6.6\right)$	7, 6, 4, 3	6, 4
6	$\stackrel{42.39}{\left(\mathrm{CH}_{2}\right)}$	$2.41\left(\mathrm{t}, J_{6,5}=6.6\right)$	7, 8, 5, 4	7, 5
7	$\begin{gathered} 209.29 \\ \text { (C) } \end{gathered}$		6, 8, 9	
8	$\stackrel{41.68}{\left(\mathrm{CH}_{2}\right)}$	3.13 (d, $\left.J_{8,9}=6.2\right)$	$7 \underset{5}{70} 9,6$	6, 9, 10
9	$\begin{array}{r} 121.06 \\ (\mathrm{CH}) \end{array}$	$\begin{aligned} & 5.54\left(\mathrm{dtt}, J_{9,10}=11.0, J_{9,8}=6.2,\right. \\ & \left.J_{9,11}=1.5\right) \end{aligned}$	8,11	8, 11
10	$\begin{array}{r} 133.55 \\ (\mathrm{CH}) \end{array}$	$\begin{aligned} & 5.58\left(\mathrm{dtt}, J_{10,9}=11.0, J_{10,11}=7.5,\right. \\ & \left.J_{10,8}=1.4\right) \end{aligned}$	11, 8, 12	8, 11
11	$\begin{aligned} & 27.48 \\ & \left(\mathrm{CH}_{2}\right) \end{aligned}$	2.02 (m)		
12	$\begin{aligned} & 29.22 \\ & \left(\mathrm{CH}_{2}\right) \end{aligned}$	1.35 (m)		
13	$\begin{gathered} 28.93^{*} \\ \left(\mathrm{CH}_{2}\right)^{d} \end{gathered}$	1.35 (m)		
14	$\begin{gathered} 28.81^{*} \\ \left(\mathrm{CH}_{2}\right) \end{gathered}$	1.35 (m)	$13,12,16,$	
15	$\begin{aligned} & 33.75 \\ & \left(\mathrm{CH}_{2}\right) \end{aligned}$	2.03 (m)	$\begin{aligned} & \text { 17a, 17b, } \\ & 16,14, \\ & 13 \end{aligned}$	$\begin{gathered} 17 a, 17 b, \\ 16,14 \end{gathered}$
16	$\begin{array}{r} 139.01 \\ (\mathrm{CH}) \end{array}$	$\begin{aligned} & 5.80\left(\mathrm{ddt}, J_{16,17 \mathrm{a}}=17.1, J_{16,17 \mathrm{~b}}=\right. \\ & \left.10.2, J_{16,15}^{=}=6.7\right) \end{aligned}$	15, 14	$\begin{gathered} 17 \mathrm{a}, 17 \mathrm{~b} \\ 15 \end{gathered}$
17	$\begin{gathered} 114.29 \\ \left(\mathrm{CH}_{2}\right) \end{gathered}$	$\begin{aligned} & \text { a } 4.95\left(\mathrm{ddt}, J_{17 \mathrm{a}, 16}=17.1, J_{17 \mathrm{a}, 17 \mathrm{~b}}\right. \\ & \left.\quad=2.2, J_{17 \mathrm{a}, 15}=1.5\right) \end{aligned}$	15	16
		$\begin{aligned} & \mathrm{b} 4.85\left(\mathrm{ddt}, J_{17 \mathrm{~b}, 16}=10.5, J_{17 \mathrm{~b}, 17 \mathrm{a}}\right. \\ & \left.\quad=2.1, J_{17 \mathrm{~b}, 15}=1.2\right) \end{aligned}$		16

${ }^{a} \delta_{c}$, multiplicity given by DEPT is in parentheses. ${ }^{b} \delta_{\mathrm{H}}$, multiplicity of signals is given in parentheses: s , singlet; d , doublet; t , triplet; m , multiplet; coupling constants (apparent splitting) are reported as numerical values in hertz. ${ }^{c}$ Signal correlating with ${ }^{1} \mathrm{H}$ resonance. ${ }^{d_{*}}$: interchangeable values.
software (version 2009.4.06), on the basis of the components that accounted for more than $1.5 \mathrm{~g} / 100 \mathrm{~g}$ of the total oil. PCA was made with Pearson matrix, and HCA was made with Euclidian matrix and Ward aggregation.

Antibacterial Activity. Oil Fractionation. Five grams of C3 sample essential oil was successively fractioned by column chromatography on silica gel (ICN $200-500 \mu \mathrm{~m}, 80 \mathrm{~g}$) with pentane and diethyl ether to give a hydrocarbon fraction (HF) and an oxygenated fraction (OF), respectively. Both HF and OF fractions were analyzed by GC and GC-MS.
Microbial Strains. The oil was tested against eight bacteria: three Gram-positive bacteria, Bacillus cereus, Staphylococcus aureus, and Listeria monocytogenes, and five Gram-negative bacteria, Escherichia coli, Pseudomonas aeruginosa, Citrobacter frendii, Enteroccocus faecalis, and Klebsiella pneumoniae. All bacteria were isolated from the medical devices (catheters and vesicle probes) of the service surgery at the CHU of Tlemcen, and their identification was achieved with API 20 test strips (Biomerieux). They were also tested against one strain of Candida albicans (Ca 444) obtained from the Pasteur Institute of Algeria (IPA). All of the strains were grown on Mueller-Hinton agar (MHA) for the bacteria and Saboureaud dextrose agar (SDA) with chloramphenicol for yeasts.

Antimicrobial Screening. Antimicrobial activities are measured using the paper disk diffusion. ${ }^{18}$ The agar plate containing the
appropriate medium was spread with the inoculums containing 10^{8} CFU mL^{-1}. The filter paper disks (6 mm in diameter) were impregnated with $3 \mu \mathrm{~L}$ of the oil and then placed onto agar plates. In addition, reference disks without any oil and antibiotics (gentamicin, $15 \mu \mathrm{~g}$; amphothericin B $100 \mu \mathrm{~g}$) were used for comparison. After incubation at $37 \pm 1^{\circ} \mathrm{C}$ for $18-24 \mathrm{~h}$ for bacteria and at $30 \pm 1^{\circ} \mathrm{C}$ for $24-48 \mathrm{~h}$ for yeast, the diameters of inhibition zones were measured and are reported in Table 3.

Minimal inhibitory concentrations (MICs) were determined using the dilution agar method. ${ }^{19}$ Serial dilutions of the oil were carried out in Mueller-Hinton agar medium. Appropriate volumes of every dilution were added to this medium to obtain the required concentration range and a final concentration of Tween 80 at 10% (v / v). Two controls were included in this test. Each dish contained a sterile solution of Tween 80 and the culture medium, respectively. After incubation at $37 \pm 1^{\circ} \mathrm{C}$ for $18-24 \mathrm{~h}$ for bacteria and at 30 ± 1 ${ }^{\circ} \mathrm{C}$ for 48 h for yeast, the MICs were defined as the lowest concentration of the oil (Table 3) at which the microorganism did not demonstrate visible growth. Antibiotics used were the same as described above.

RESULTS AND DISCUSSION

Oil Components. The combined use of CC, GC-RI, GCMS (EI and CI), and NMR analyses of Corsican and Sardinian C. mixtum essential oils identified the same 78 components in each sample, which accounted for $89.9-93.5 \mathrm{~g} / 100 \mathrm{~g}$ of the total amount (Table 2). The 78 components were distributed as 11 hydrocarbon monoterpenes ($1.3-8.6 \mathrm{~g} / 100 \mathrm{~g}$), 20 oxygenated monoterpenes ($21.0-57.2 \mathrm{~g} / 100 \mathrm{~g}$), 15 hydrocarbon sesquiterpenes $(6.1-50.7 \mathrm{~g} / 100 \mathrm{~g}), 13$ oxygenated sesquiterpenes $(3.2-17.4 \mathrm{~g} / 100 \mathrm{~g})$, and 19 nonterpenic compounds ($5.5-16.4 \mathrm{~g} / 100 \mathrm{~g}$). Corsican and Sardinian C. mixtum oils were qualitatively similar but differed in terms of the relative concentrations of their major components. The main components were three irregular monoterpenes wellknown in Asteraceae essential oils, namely, santolina alcohol, 18 ($12.5-46.2 \mathrm{~g} / 100 \mathrm{~g}$), yomogi alcohol, 13 ($0.7-16.2 \mathrm{~g} / 100$ $\mathrm{g})$, and artemisia alcohol, $22(1.3-13.2 \mathrm{~g} / 100 \mathrm{~g})$; three hydrocarbon sesquiterpenes, namely, germacrene $\mathrm{D}, 54$ ($0.5-$ $28.6 \mathrm{~g} / 100 \mathrm{~g})$, (E, E)- α-farnesene, $57(0.2-15.6 \mathrm{~g} / 100 \mathrm{~g})$, and (E) $-\beta$-farnesene, $52(1.9-11.3 \mathrm{~g} / 100 \mathrm{~g})$; and compound 76 . All components have been identified by comparing their GC retention indices and mass spectra with those of our laboratoryproduced "Arômes" library, except for 12 compounds that have been identified from commercial libraries. ${ }^{14,15,20}$

Compound 76, which amounted to $4.4-12.7 \mathrm{~g} / 100 \mathrm{~g}$ of C. mixtum essential oils, remained unidentified. To complete the identification, we investigated the Corsican C. mixtum sample oil (C3) in which 76 accounted for $10.7 \mathrm{~g} / 100 \mathrm{~g}$. The isolation of 76 required combining successive chromatography columns and chemical transformations to change the polarity and improve the resolution of CC separation (see Materials and Methods). The unknown compound was obtained close to purity (76, 97.5%) by employing this analytical procedure, and its structure was elucidated by GC-MS-(EI), GC-MS-(CI), and 1D- and 2D-NMR.

EI mass spectra of 76 exhibited a base peak at $m / z 43$ and two other peaks at $m / z 113$ and 85 . Because a weak signal at $m / z 250$, which could be attributed to the molecular ion, was observed in the EI mass spectra, the molecular mass 250 was deduced by positive and negative chemical ionization mass spectrometry (PCI- and NCI-MS). Pseudomolecular ions [M $-\mathrm{H}]^{-}$at $m / z 249$ and $[\mathrm{M}+\mathrm{H}]^{+}$at $m / z 251$ were observed in $\mathrm{NCI}-\mathrm{NH}_{3}$ and PCI-CH 4_{4} mass spectra, respectively. Addition-

 ぶ

total identified

Table 2. continued

				Corsican samples										Sardinian samples			C3 fractions ${ }^{\text {a }}$		identification ${ }^{\text {e }}$
no. components	$\mathrm{LRI}^{\text {b }}$	$\mathrm{RI}^{\text {c }}{ }^{\text {c }}$	$\mathrm{RI}^{\text {d }}{ }^{\text {d }}$	C1	C2	C3	C4	C5	C6	C7	C8	C9	C10	S1	S2	S3	HF	OF	
oxygenated irregular monoterpenes				40.7	40.6	39.9	31.9	16.1	30.1	24.3	28.9	25.3	15.5	49.6	53.1	34.1		61.5	
hydrocarbon sesquiterpenes				25.2	21.6	21.7	36.7	50.7	33.8	46.8	46.3	30.4	36.4	6.1	7.4	13.1	88.2		
oxygenated sesquiterpenes				6.3	5.8	5.5	3.2	6.9	6.5	8.9	6.2	10.1	17.4	12.5	6.0	11.8		7.0	
nonterpenic hydrocarbon compounds				0.1	0.3	0.3	0.1	0.4	0.2	0.3	0.2	0.2	1.0	0.4	0.2	1.6	0.9		
nonterpenic oxygenated compounds				11.3	11.6	11.8	8.6	10.2	10.1	5.2	7.0	12.2	10.7	14.8	14.3	14.8		16.0	
yields (w/w vs fresh material)				0.20	0.19	0.22	0.70	0.54	0.51	0.55	0.60	0.59	0.63	0.24	0.26	0.45			
${ }^{a}$ Hydrocarbon (HF) and oxygenate ${ }^{b}$ Literature retention indices on apo (polar) column. $\mathrm{g} / 100 \mathrm{~g}$ of individu computer mass libraries; RI, by com experiments). $f_{\mathrm{t}}=$ trace $(<0.05 \mathrm{~g} / 100$ comparison of its retention indices	(OF) ar colu comp parison g). F with t		rom d fro Rtx-1 thos com comm	m (C 4 exce those hentic (e.g., ibrarie	le) e wi me e or the 16)		ca, ob ich are g give iteratu of v ure.	ned b report on Rt ; Std, ation	colum from Wax. y core al	chro ef 20. Metho ection ys <6.	togr eten of id f an ${ }^{g}{ }^{g} \mathrm{C}$	y, re n ind ificat hent pou		Orde x-1 (a y com NMR vely id	of elu lar) arison y ntifie	n is umn f the ear M ccor	n on Retent ss spe netic to its	olar ind rum sona mass	umn (Rtx-1). s on Rtx-Wax h those of the (1D and 2D ctrum and by

ally, PCI- NH_{3} mass spectra showed a signal adduct $[\mathrm{M}+$ $\left.\mathrm{NH}_{4}\right]^{+}$at $m / z 268$.

The ${ }^{13} \mathrm{C}$ NMR spectra of 76 exhibited 17 carbon signals, which were assigned according to the distortionless enhancement by polarization transfer (DEPT) spectra to 1 methyl carbon at $\delta_{\mathrm{C}} 14.05 \mathrm{ppm}, 11$ methylene carbons with chemical shifts between $\delta_{\mathrm{C}} 42.69$ and $22.53 \mathrm{ppm}, 1$ exomethylene carbon at $\delta_{\mathrm{C}} 114.29 \mathrm{ppm}, 3$ ethylenic methine carbons at $\delta_{\mathrm{C}} 139.01$, 133.55, and 121.06 ppm , and a quaternary carbon at $\delta_{\mathrm{C}} 209.29$ ppm characteristic of a carbonyl group (Figure 1). The

Figure 1. Structure of (Z)-heptadeca-9,16-dien-7-one, 76.
molecular formula $\mathrm{C}_{17} \mathrm{H}_{30} \mathrm{O}$ deduced from the DEPT spectra requires three degrees of unsaturation, accounted for by two olefinic carbons and one carbonyl carbon. Here, we assigned 76 to a linear carbonyl compound.

The ${ }^{1} \mathrm{H}$ NMR spectrum of 76 displayed one triplet $\left(\delta_{\mathrm{H}} 0.89\right)$ methyl signal, two shielded methine signals at $\delta_{\mathrm{H}} 3.13(2 \mathrm{H}, \mathrm{d})$ and $2.41(2 \mathrm{H}, \mathrm{t})$, and several multiplets between $\delta_{\mathrm{H}} 1.27$ and 2.41. Additionally, the ${ }^{1} \mathrm{H}$ NMR spectrum showed two downfield signals at $\delta_{\mathrm{H}} 5.54(1 \mathrm{H}, \mathrm{dtt})$ and $5.58(1 \mathrm{H}, \mathrm{dtt})$ and three deshielded ddt signals ($\delta_{\mathrm{H}} 4.85,4.95,5.80$) involved in the three-proton AMX system, suggesting the presence of a terminal allylic moiety. The carbonyl group was assigned to a ketone because no aldehydic proton was observed in the downfield region of the ${ }^{1} \mathrm{H}$ spectra. Heteronuclear singlequantum coherence (HSQC), heteronuclear multiple-bond correlation spectroscopy (HMBC), and correlation spectroscopy (COSY) experiments confirmed the structure of a diunsaturated linear ketone (Figure 1).

The position of the ketone was established from joint information from EI-MS and two-dimensional NMR spectra. Characteristic mass fragments at $m / z 113\left[\mathrm{C}_{7} \mathrm{H}_{13} \mathrm{O}\right]^{+}$and 85 $\left[\mathrm{C}_{6} \mathrm{H}_{13}\right]^{+}$, corresponding to the α-keto- β-allylic break (C-7-C8) and charge-induced break (C-6-C-7), respectively, indicated that the ketone group was at the C-7 position. Additionally, the strongly shielded nature of H-6 and H-8, respectively, $\delta_{\mathrm{H}} 2.41$ $(2 \mathrm{H}, \mathrm{t})$ and $3.13(2 \mathrm{H}, \mathrm{m})$, and the correlations in the HMBC experiment between $\mathrm{C}-7 / \mathrm{H}-6$ and $\mathrm{C}-7 / \mathrm{H}-8$ confirmed that the ketone group was at the C-7 position. The nonconjugated nature of the carbonyl group was directly confirmed by observation of cross-peaks in the HMBC spectrum between signals at $\delta_{\mathrm{C}} 209.29$ (s, C-7) and $\delta_{\mathrm{H}} 3.13$ ($2 \mathrm{H}, \mathrm{d}, \mathrm{H}-8$), which had COSY correlations with the two ethylenic protons of the double bond $\delta_{\mathrm{H}} 5.54(1 \mathrm{H}, \mathrm{dtt}, \mathrm{H}-9)$ and $5.58(1 \mathrm{H}, \mathrm{dtt}, \mathrm{H}-10)$. Furthermore, the strong downfield proton signal at $\delta_{\mathrm{H}} 3.13$ ($2 \mathrm{H}, \mathrm{d}, \mathrm{C}-8$) confirmed the localization between the ketone and allylic double bond. HSQC, HMBC, and COSY correlations confirmed the localization of the $\Delta^{9,10}$ double bond on the linear chain. The relative configuration of the $\Delta^{9,10}$ double bond was established by analysis of ${ }^{1} \mathrm{H}$ coupling patterns and the steric effect observed in ${ }^{13} \mathrm{C}$ NMR spectra. The medium coupling constant $\left({ }^{3} J_{\mathrm{H}-9, \mathrm{H}-10}=11.0 \mathrm{~Hz}\right)$ was in agreement with a Z configuration. Moreover, the Z configuration of the $\Delta^{9,10}$ double bond was confirmed by the
shielded methylene signals at $\delta_{\mathrm{C}} 41.68(\mathrm{C}-8)$ and 27.48 (C-11), which are characteristic of a γ steric effect between two carbons relative to compounds with E configuration ($\delta_{\mathrm{C} 8} \sim 45 \mathrm{ppm}$, $\delta_{\mathrm{C} 11} \sim 32 \mathrm{ppm}$, respectively). ${ }^{21}$

Finally, we unambiguously identified 76 as (Z)-heptadeca-9,16-dien-7-one, a previously undescribed natural product that probably originates biosynthetically along the fatty acid pathway or, although less likely, from carotenoid decay.

Essential Oil Description and Variability. Aerial parts of 13 C. mixtum samples from Corsica and Sardinia were hydrodistilled to afford essential oils with moderate yields: $0.020-0.070 \%$ of fresh material. The oils were investigated to obtain better insight into the chemical composition and variability. The standardized essential oil matrix was statistically analyzed employing hierarchical ascending classification and PCA. The dendrogram and plot established using the first two axes, which accounted for 30.44 and 19.70% of the total variance, suggest the existence of three clusters (Figures 2 and

Figure 2. Dendrogram from hierarchical ascending classification of C. mixtum sample oils from Corsica ($\mathrm{C} 1-10$) and Sardinia (S1-3).
3). Figure 3 shows the distribution of the discriminating volatile compounds: santolina alcohol, 18; yomogi alcohol, 13; artemisia alcohol, 22; (E, E)- α-farnesene, 57; (E)- β-farnesene, 52; (Z)-heptadeca-9,16-dien-7-one, 76; and germacrene $D, 54$,
as well as the distribution of oil samples. The F1 axis was negatively correlated with hydrocarbon sesquiterpenes 57,52 , and 54 and positively correlated with oxygenated compounds 13,18 , and 22 as well as 76 .

Cluster I included three Sardinian sample oils dominated by oxygenated compounds ($77.6-82.4 \mathrm{~g} / 100 \mathrm{~g}$) including oxygenated irregular monoterpenes ($34.1-53.1 \mathrm{~g} / 100 \mathrm{~g}$). The amount of hydrocarbon compounds was low ($<16.0 \mathrm{~g} / 100 \mathrm{~g}$). The main components were santolina alcohol, 18 (39.8-46.2 $\mathrm{g} / 100 \mathrm{~g}$), and heptadeca-9,16-dien-7-one, 76 ($12.3-12.7 \mathrm{~g} / 100$ g). Cluster II included three Corsican sample oils characterized by lower concentrations of oxygenated compounds (62.4-65.7 $\mathrm{g} / 100 \mathrm{~g}$) than for cluster I and higher amounts of hydrocarbon compounds ($24.8-27.7 \mathrm{~g} / 100 \mathrm{~g}$). The major compounds were yomogi alcohol, 13 ($14.3-16.2 \mathrm{~g} / 100 \mathrm{~g}$); santolina alcohol, 18 ($12.5-15.6 \mathrm{~g} / 100 \mathrm{~g}$); artemisia alcohol, $22(12.0-13.2 \mathrm{~g} / 100$ $\mathrm{g})$ ' and (Z)-heptadeca-9,16-dien-7-one, 76 ($9.9-10.7 \mathrm{~g} / 100 \mathrm{~g}$); therefore, the amount of irregular oxygenated monoterpenes was quite similar ($39.6-40.7 \mathrm{~g} / 100 \mathrm{~g}$) to that for cluster I. Finally, cluster III included the seven other Corsican oil samples. These oil samples were characterized by higher amounts of hydrocarbon sesquiterpenes ($30.4-50.7 \mathrm{~g} / 100 \mathrm{~g}$) and lower amounts of irregular oxygenated monoterpenes $(15.5-31.9 \mathrm{~g} / 100 \mathrm{~g})$ than for clusters I and II. The main components were santolina alcohol, 18 ($15.4-26.2 \mathrm{~g} / 100 \mathrm{~g}$); germacrene D, 54 ($13.3-28.6 \mathrm{~g} / 100 \mathrm{~g}$); (E, E)- α-farnesene, 57 $(3.4-15.6 \mathrm{~g} / 100 \mathrm{~g})$; and (E) $-\beta$-farnesene, $52(1.9-11.3 \mathrm{~g} / 100$ g). We note that C. mixtum samples from cluster III had higher essential oil yields $(0.51-0.70 \%)$ than those from the two other clusters (0.19-0.45\%).

The chemical variability between Corsican and Sardinian C. mixtum sample oils reported here can be explained by environmental factors. The variability was linked to the harvest area. Whereas samples from cluster I were clearly correlated to the Sardinian harvest area, Corsican samples from cluster II were localized in a weaker area near Bastia (in the northeast of the island), and the samples of cluster III were distributed in more disparate areas of Corsica. It is not surprising to find such results owing to the well-known difference of soils between these two distinct geological areas. ${ }^{2}$

Figure 3. Principal component analysis of C. mixtum sample oils from Corsica (C1-10) and Sardinia (S1-3).

Table 3. Antibacterial Activities of C. mixtum Essential Oil

microorganisms	DD^{a} (mm)				$\mathrm{MIC}^{b}(\mu \mathrm{~g} / \mathrm{mL})$			
	EO^{c}	$\mathrm{HF}^{\text {d }}$	OF^{e}	ATB f	EO	HF	OF	ATB
Gram-positive bacteria								
Bacillus cereus	11	10	15	18	900	825	88.5	4
Staphylococcus aureus	30	17	25	20	90	82.5	85.8	2
Listeria monocytogenes	15	11	15	18	90	825	85.8	2
Gram-negative bacteria								
Escherichia coli	25	18	20	20	90	858	85.8	4
Pseudomonas aeruginosa	10	9	11	11	1000	1000	1000	4
Citrobacter frendii	30	20	24	19	90	825	85.8	4
Enteroccocus faecalis	25	16	31	18	90	825	85.8	4
Klebsiella pneumoniae	30	19	32	20	90	825	85.8	4
yeast								
Candida albicans	12	11	20	18	900	8255	85.8	1

${ }^{a}$ Agar disk diffusion method. Diameter of inhibition zone (mm) including well diameter of 6 mm . ${ }^{b}$ Minimum inhibitory concentration. ${ }^{c}$ Essential oil sample C3 from Arinella (Corsica). ${ }^{d}$ Hydrocarbon fraction obtained by CC from C3 oil sample (7:5.6 g/100 g, 54: $20.3 \mathrm{~g} / 100 \mathrm{~g}, 54: 29.4 \mathrm{~g} / 100 \mathrm{~g}$ and 57: $26.0 \mathrm{~g} / 100 \mathrm{~g}$). ${ }^{e}$ Oxygenated fraction obtained by CC from C3 oil sample (13: $19.9 \mathrm{~g} / 100 \mathrm{~g}, 18: 21.5 \mathrm{~g} / 100 \mathrm{~g}, 22: 20.1 \mathrm{~g} / 100 \mathrm{~g}$ and $76: 16.9$ $\mathrm{g} / 100 \mathrm{~g}) .{ }^{f}$ Antibiotic, gentamicine $(15 \mu \mathrm{~g})$ for bacteria, amphotericin $\mathrm{B}(5 \mu \mathrm{~g})$ for yeast.

Compared with previously described Moroccan C. mixtum essential oil, ${ }^{8-10}$ the chemical compositions of Corsican and Sardinian essential oil samples included a newly described linear ketone, (Z)-heptadeca-9,16-dien-7-one, 76 ($4.4-12.7 \mathrm{~g} /$ 100 g), as a major compound. It is notable that the chemical compositions of the essential oil samples from Corsica (clusters II and III), particularly essential oil samples from cluster II, had original chemical compositions, with high levels of yomogi alcohol, 13 ($14.3-16.2 \mathrm{~g} / 100 \mathrm{~g}$), and artemisia alcohol, 22 ($12.0-13.2 \mathrm{~g} / 100 \mathrm{~g}$).

Antibacterial Activities. The antimicrobial activities of C. mixtum essential oils from Morocco are already known. ${ }^{8}$ As mentioned in the previous section, samples belonging to cluster II from Corsica are the most unique of Moroccan essential oils previously described, ${ }^{8-10}$ and we therefore investigated the antimicrobial activities of sample C3. This sample and both hydrocarbon and oxygenated fractions obtained by CC were tested in vitro, employing the agar diffusion method and the minimum inhibitory concentration (MIC) in liquid phase, against eight bacteria (five Gram-negative and three Grampositive) and one yeast (Table 3). The results obtained employing disk diffusion indicated that the essential oil and CC fractions had a strong antimicrobial effect against S. aureus, E. coli, C. freundii, E. faecalis, L. monocytogenes, and K. pneumoniae ($15-30 \mathrm{~mm}$). The oxygenated fraction also demonstrated good activity against C. albicans yeast (20 mm). MIC results did not show significant activity for the hydrocarbon fraction, except against S. aureus. However, the MIC results for the essential oil showed strong activity against S. aureus, E. coli, C. freundii, E. faecalis, L. monocytogenes, and K. pneumoniae ($90.0 \mu \mathrm{~g} / \mathrm{mL}$). Better MIC results were obtained for the oxygenated fraction, which was active against all bacteria ($85.8 \mu \mathrm{~g} / \mathrm{mL}$) except P. aeruginosa. The oxygenated fraction had good activity against C. albicans yeast with a lower MIC ($85.8 \mu \mathrm{~g} / \mathrm{mL}$).

The antibacterial and antifungal potential of the oxygenated CC fraction can be explained by its main components: santolina alcohol, 18 ($21.5 \mathrm{~g} / 100 \mathrm{~g}$); artemisia alcohol, 22 $(20.1 \mathrm{~g} / 100 \mathrm{~g})$; yomogi alcohol, $13(19.9 \mathrm{~g} / 100 \mathrm{~g})$; and (Z)-heptadeca-9,16-dien-7-one, 76 ($16.9 \mathrm{~g} / 100 \mathrm{~g}$). As seen in previous work, irregular monoterpene alcohols have antibacterial activity, ${ }^{22,23}$ and linear unsaturated ketones have good antibacterial and antifungal activities. ${ }^{24}$

Essential oil from Corsica had the same activity against S. aureus and E. coli as Moroccan ${ }^{8}$ C. mixtum oil, but this is the first report of C. mixtum biological activity against C. albicans, C. freundii, E. faecalis, K. pneumoniae, and L. monocytogenes. These results confirm the high potential of C. mixtum oil as a natural antimicrobial to prevent the growth of bacteria and yeast in food and medicines.

ASSOCIATED CONTENT

(S) Supporting Information

(Z)-Heptadeca-9,16-dien-7-one ${ }^{13} \mathrm{C}$ and ${ }^{1} \mathrm{H}$ NMR spectra. This material is available free of charge via the Internet at http:// pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author

*E-mail: muselli@univ-corse.fr. Phone: (+33) 495450171.

ACKNOWLEDGMENTS

We thank Pr. Felix Tomi (University of Corsica) and Sylvain Sutour for NMR data acquisition.

REFERENCES

(1) Coste, H. Flore Descriptive et Illustrée de la France, de la Corse et des Contrées Limitrophes II; Librairie Scientifique et Technique Albert Blanchart: Paris, France, 1980; pp 627.
(2) Gamisans, J.; Jeanmonod, D. Compléments au Prodrome de la Flore Corse: Asteraceae - II; Editions des Conservatoires et Jardins botaniques de la Ville de Genève: Genève, Switzerland, 1998; pp 340.
(3) De Pascual Teresa, L.; Caballero, E.; Anaya, J.; Caballero, C.; Gonzalez, M. S. Eudesmanolides from Chamaemelum fuscatum. Phytochemistry 1986, 25, 1365-1369.
(4) De Pascual Teresa, J.; Caballero, E.; Caballero, C.; Anaya, J.; Gonzalez, M. S. Four aliphatic esters of Chamaemelum fuscatum essential oil. Phytochemistry 1983, 22, 1757-1759.
(5) De Pascual, J.; Teresa, J.; Anaya, J.; Caballero, E.; Caballero, M. C. Sesquiterpenes lactones and aliphatic ester from Chamaemelum fuscatum. Phytochemistry 1988, 27, 855-860.
(6) Engelmeier, D.; Hadacek, F.; Hofer, O.; Lutz-Kutschera, G.; Nagl, M.; Wurz, G.; Greger, H. Antifungal 3-butylisocoumarins from Asteraceae-Anthemideae. J. Nat. Prod. 2004, 67, 19-25.
(7) Lahsissene, H.; Kahouadji, A.; Tijane, M.; Hseini, S. Catalogue des plantes médicinales utilisées dans la région de Zaër (Maroc Occidental). Rev. Bot. 2009, Lejeunia, 186.
(8) Satrani, B.; Ghanmi, M.; Farah, A.; Aafi, A.; Fougrach, H.; Bourkhiss, B.; Bousta, D.; Talbi, M. Composition chimique et activité antimicrobienne de l'huile essentielle de Cladanthus mixtus. Bull. Soc. Pharm. Bordeaux 2007, 146, 85-89.
(9) Toulemonde, B.; Beauverd, D. Contribution à l'étude d'une camomille sauvage du Maroc: L'huile essentielle d'Ormenismixta L. ler Colloque International sur les Plantes Aromatiques et Médicinales du Maroc; Centre National de Coordination et de Planification de la Recherche Scientifique et Technique: Rabat, Morocco, 1984; pp 169173.
(10) Zrira, S.; Menut, C.; Bessiere, J. M.; Benjilalii, B. Chemical composition of the essential oils of Moroccan Ormenis mixta (L.) Dumort. ssp. multicaulis. J. Essent. Oil Bearing Plants 2007, 10, 378385.
(11) Council of Europe. European Pharmacopoeia, 3rd ed.; Strasbourg, France, 1997.
(12) Van Den Dool, H.; Kratz, P. D. A generalization of the retention index system including linear temperature programmed gas-liquid partition chromatography. J. Chromatogr. 1963, 11, 463-471.
(13) Costa, R.; Zellner, B. A.; Crupi, M. L.; Fina, M.; Valentino, M.; Dugo, P.; Dugo, G.; Mondello, L. GC-MS, GC-O and enantio-GC investigation of the essential oil of Tarchonanthus camphoratus L. Flavour Fragrance J. 2008, 23, 40-48.
(14) König, W. A.; Hochmuth, D. H.; Joulain, D. Terpenoids and related constituents of essential oils. Library of Mass Finder; Institute of Organic Chemistry: Hamburg, Germany, 2008.
(15) Adams, R. P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry, 4th ed.; Allured Publishing: Carol Stream, IL, 2007.
(16) National Institute of Standards and Technology. PC Version of the NIST/EPA/NIH Mass Spectra Library; NIST: Gaithersburg, MD, 2008.
(17) Brereton, R. G. Chemometrics: Data Analysis for the Laboratory and Chemical Plant; Wiley Interscience: New York, 2003.
(18) Benjilali, B.; Tantaoui-Elaraki, E. A.; Ismaili Alaoui, N.; Ayadi, A. Méthode d'études des propriétés antiseptiques des huiles essentielles par contact direct en milieu gélosé. Plant Med. Phytother. 1986, 20, 155-167.
(19) Belaiche, P. L'Aromatogramme. Traité de Phytothérapie et d'Aromathérapie, Tome 1 ed.; Maloine: Paris, France, 1979.
(20) National Institute of Standards and Technology. NIST WebBook, available at http://webbook.nist.gov/chemistry/, 2005.
(21) National Institute of Advanced Industrial Science and Technology. Spectral Database for Organic Compounds. SDBS, available at http://riodb01.ibase.aist.go.jp/sdbs/, 2008.
(22) Filippi, J. J.; Lanfranchi, D. A.; Prado, S.; Baldovini, N.; Meierhenrich, U. J. Composition, enantiomeric distribution and antibacterial activity of the essential oil of Achillea ligustica All. from Corsica. J. Agric. Food Chem. 2006, 54, 6308-6313.
(23) Muselli, A.; Rossi, P. G.; Desjobert, J. M.; Bernardini, A. F.; Berti, L.; Costa, J. Chemical composition and antibacterial activity of Otanthus maritimus (L.) Hoffmanns. \& Link essential oils from Corsica. Flavour Fragrance J. 2007, 22, 217-222.
(24) Wood, F. W. Topical antimicrobial agent. U.S. Patent 5,604,262, Feb 18, 1997.

[^0]: Received: September 27, 2011
 Revised: January 3, 2012
 Accepted: January 6, 2012
 Published: January 6, 2012

